The dimension of this vector space is obviously infinite dimensional, and it's not too much work to show that its basis is an uncountable set, making it an uncountably-infinite dimensional vector space.
Many questions have been asked on MSE along those lines.
My question is: for the vector space of all real-valued functions on $\mathbb{R}$, what is the cardinality of its basis set? If the basis has the same cardinality as $\mathbb{R}$ (which is $\aleph_1$, right?), that would be the dimension of the vector space, but it also might be a higher cardinal. How would one go about showing this formally?
Also, will anything change if the vector space is instead all real-valued functions on $[0,1]$? I see that vector space a lot but I don't think its size would be any different. Am I correct in thinking this?