Show there is a surjective homomorphism from $\mathbb{Z}\ast\mathbb{Z}$ onto $C_2\ast C_3$, where $\ast$ denotes the coproduct in the category $\mathsf{Grp}$.
Note the exercise in this book (Algebra Chapter 0, Aluffi) is meant, or at least hinted at, to be done using the universal property of the coproduct, ie: coproduct of $A$ and $B$ in $\mathsf{Grp}$ is initial in the category $\mathsf{Grp}^{A,B}$, instead of using the definition of the free product.
By property of the coproduct, for any object $A$ and two homomorphisms $f_1,f_2:\mathbb{Z}\to A$, and two homomorphisms $i_1,i_2:\mathbb{Z}\to\mathbb{Z}\ast\mathbb{Z}$, there exists a unique homomorphism $\sigma:\mathbb{Z}\ast\mathbb{Z}\to A$ such that the diagram commutes, ie: $f_1=\sigma i_1$ and $f_2=\sigma i_2$. Now let $A=C_2\ast C_3$. Now what?
