We say that a bounded operator $\varphi:X\to Y$ is
- $c$-topologically injective if $\Vert\varphi(x)\Vert\geq c\Vert x\Vert$ for all $x\in X$
- $c$-topologically surjective if for all $y\in Y$ there exist $x\in X$ such that $\varphi(x)=y$ and $\Vert x\Vert\leq c\Vert y\Vert$
I have already proved that $$ \varphi \;\text{$c$-topologically injective}\Longleftrightarrow\varphi^*\; \text{$c^{-1}$-topologically surjective}\\ \varphi \;\text{$c$-topologically surjective}\Longrightarrow\varphi^*\; \text{$c^{-1}$-topologically injective} $$ and got stuck at proving that $$ \varphi \;\text{$c$-topologically surjective}\Longleftarrow\varphi^*\; \text{$c^{-1}$-topologically injective}\tag{1} $$
Edit:
Thank to rayuela, now I can perform the proof. Let $\varphi^*$ is $c^{-1}$ topologically injective. Assume that $\mathrm{cl}_Y(\varphi(cB_X))\not{\supset} B_Y$, then we have some $y_0\in B_Y\setminus\mathrm{cl}_Y(\varphi(cB_X))$. By geometric form of Hahn Banch theorem there exist $g\in Y^*$ and $\gamma_2>\gamma_1>0$ such that $$ \mathrm{Re}(g_0(y_0))>\gamma_2>\gamma_1>\mathrm{Re}(g_0(y)) $$ for all $y\in \mathrm{cl}_Y(\varphi(cB_X))$. By considering $g=2(\gamma_1+\gamma_2)^{-1}g_0$ we get $$ \mathrm{Re}(g(y_0))>1>\mathrm{Re}(g(y)) $$ for all $y\in \varphi(B_X)$. For all $\lambda\in\mathbb{C}$ with $|\lambda|<1$ and $y\in\varphi(B_X)$ we have $\lambda y\in\varphi(B_X)$, so $$ |g(y_0)|>\mathrm{Re}(g(y_0))>1>|g(y)| $$ for all $y\in \varphi(cB_X)$. Since $|g(y_0)|>1$ while $y_0\in B_Y$, then $\Vert g\Vert> 1$. On the other hand for all $x\in c B_X$ we have $|g(\varphi(x))|<1$, i.e. $|\varphi^*(g)(x)|<1$. So $\Vert\varphi^*(g)\Vert<c$ and from $c^{-1}$-topological injectivity of $\varphi^*$ we get $\Vert g\Vert\leq c\Vert\varphi^*(g)\Vert\leq 1$. Contradiction, so $B_Y\subset\mathrm{cl}_Y(\varphi(cB_X))$. By open mapping theorem $\varphi(cB_X)\supset B_Y$ which is equivalent to $c$-topological surjectivity of $\varphi$.
Thank you for taking time.