Let $(a_n)_{n \geq 1}$ be a decreasing sequence of positive reals. Let $s_n = a_1 + a_2 + ... + a_n$ and
\begin{align} b_n = \frac{1}{a_{n+1}} - \frac{1}{a_n}, n \geq 1 \end{align}
Prove that if $(s_n)_{n \geq 1}$ is convergent, then $(b_n)_{n \geq 1}$ is unbounded.
My attempt: If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \neq 1 $ or DNE, then we can bound $\frac{a_{n+1}}{a_{n}}$ by $\frac{a_{n+1}}{a_{n}} < \frac{1}{k}$ for some $ k>1$
Hence $b_n = \frac{1}{a_{n+1}} - \frac{1}{a_n} > \frac{k-1}{a_n} \to \infty$
On the other hand, if $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ I'm not sure how to prove for this case.
I tried $\forall \epsilon >0 , \exists N>0, n>N \implies |\frac{a_{n+1}}{a_n} - 1| < \epsilon \implies |\frac{1}{a_{n+1}} - \frac{1}{a_n}| < \frac{\epsilon}{1-\epsilon} \frac{1}{a_n}$.
But this doesn't help me as I am looking for a lower bound.
Any hints are appreciated