I'm trying to prove the $|\cdot|_{p}$ norm will become the maximum norm when $p \to \infty$.
Let $\mathbb K$ denote $\mathbb R$ or $\mathbb C$, and $x= (x_1, \ldots, x_m) \in \mathbb K^m$. Then $$\lim_{p \to \infty} \left ( \sum_{i=1}^m |x_i|^p \right )^{1/p} = \max _{1 \leq i\leq m} |x_{i}|$$
Could you please verify whether my attempt is fine or contains logical gaps/errors? Any suggestion is greatly appreciated!
My attempt:
It suffices to prove the statement in case $x \in \mathbb {(R^+)}^{m}$, where it becomes $$\lim_{p \to \infty} \left ( \sum_{i=1}^m (x_i)^p \right )^{1/p} = \max _{1 \leq i\leq m} x_{i}$$
Let $l:= \max _{1 \leq i\leq m} x_{i}$. We have $$l = (l^p)^{1/p} \le \left ( \sum_{i=1}^m (x_i)^p \right )^{1/p} \le (ml^p)^{1/p} = m^{1/p}l$$
Then $$l = \lim_{p \to \infty} l \le \lim_{p \to \infty} \left ( \sum_{i=1}^m (x_i)^p \right )^{1/p} \le \lim_{p \to \infty} (m^{1/p}l) = l$$
and thus by squeeze theorem $$\lim_{p \to \infty} \left ( \sum_{i=1}^m (x_i)^p \right )^{1/p} = l$$
This completes the proof.