I'm trying to calculate the following limit
\begin{equation}\label{eq}\large\lim_{R\to\infty}\,i\,\int_{-\pi/2}^{\pi/2}\frac{e^{-\alpha(R+i\,w)}e^{t\,e^{R+i\,w}}}{(R+i\,w)^{\beta}}dw\end{equation}
with $\alpha\geq0$, $\beta, t>0$ .
The problem is that (I think, I'm not sure...) I can't change limit by integral.
Then, I have 2 doubs:
Can I change limit by integral?
If the answer is not, another way to manipulate this limit is welcomed.
Update 1:
Using the generating function of Bell polynomials of first kind $B_n(t)$
$$\large e^{t(e^u-1)}=\sum_{n=0}^\infty\frac{B_n(t)}{n!}u^n$$
reemplacing $u \rightarrow R+i\,w$ we have
$$\lim_{R\to\infty}\,i\,\sum_{n=0}^\infty\frac{e^t\,B_n(t)}{n!}\int_{-\pi/2}^{\pi/2}e^{-\alpha(R+i\,w)}\,(R+i\,w)^{n-\beta}dw=$$
$$\large\lim_{R\to\infty}\sum_{n=0}^\infty\frac{e^t\,B_n(t)}{n!\,\alpha^{n-b-1}}\left[\,\Gamma(n-\beta-1,\alpha(R-i\,\pi/2))-\Gamma(n-\beta-1,\alpha(R+i\,\pi/2))\,\right]$$
Update 2:
Changing the variable $R+i\,w\rightarrow u$ we have
$$\large\lim_{R\to\infty}\,i\,\int_{-\pi/2}^{\pi/2}\frac{e^{-\alpha(R+i\,w)}e^{t\,e^{R+i\,w}}}{(R+i\,w)^{\beta}}dw=\lim_{R\to\infty}\,\int_{R-i\,\pi/2}^{R+i\,\pi/2}\frac{e^{-\alpha\,u}e^{t\,e^u}}{u^{\beta}}du$$
and maybe we can apply complex integration (Cauchy theorem,...) in the last one.
