This proof works in any gcd domain. We use the $\,\overbrace{{\rm involution}\,\ x' :=\, ab/x}^{\rm\large cofactor\ duality\ \ }\ $ on the divisors of $\rm\,ab,\,$ which exposes $\rm\color{#c00}{cofactor\ reflection}$ $\rm\ x\mid y\color{#c00}\iff y'\mid x',\ $ by ${\,\ \rm\dfrac{y}x = \dfrac{x'}{y'} \ }$ by $\rm\, \ yy'\! = ab = xx',\, $ so
$$\ \ \begin{align}\rm c\mid\color{#0a0}{\gcd(a,b)}\!\iff&\rm\ c\mid a,b\\[3px]
\color{#c00}\iff&\ \rm b',a'\mid c'\\[3px]
\iff &\ \rm lcm(b',a')\mid c'\\[3px]
\color{#c00}\iff &\ \rm c\mid \color{#90f}{lcm(b',a')'} \\
{\rm thus}\rm\ \ \ \color{#0a0}{\gcd(a,b)}\, \ \approx\ \,&\rm \, \color{#90f}{lcm(b',a')'}\,=\ \dfrac{ab}{lcm(a,b)}
\end{align} $$
i.e. having the same set of divisors $\,c,\,$ they divide each other, i.e. they are associate $(\approx)$.
Above the red arrows are $\rm\color{#c00}{cofactor\ reflections}$ and the black arrows are the definition (or universal property) of gcd and lcm.