(corrected with angle $\alpha$ from vertical)
Let me show an alternative - vectorial - approach.

With reference to the above sketch, and redenominating for better readability your aperture angle $u$ as $\beta$,
the equation of the cone is given by:
$$ \bbox[lightyellow] {
\left\{ \matrix{
{\bf P} = {\bf V} + \lambda {\bf v}\quad \left| {\;0 < \lambda } \right. \hfill \cr
{\bf v} \cdot {\bf u} = - \cos \beta \hfill \cr
\left| {\bf v} \right| = 1 \hfill \cr} \right.
}$$
that is:
$$ \bbox[lightyellow] {
\left\{ \matrix{
{\bf v} = \left( {{\bf P} - {\bf V}} \right)/\lambda \quad \left| {\;0 < \lambda } \right. \hfill \cr
\left( {{\bf P} - {\bf V}} \right) \cdot {\bf u}/\lambda = - \cos \beta \hfill \cr
\left| {\left( {{\bf P} - {\bf V}} \right)} \right| = \lambda \hfill \cr} \right.
}$$
The last two equations translate into:
$$ \bbox[lightyellow] {
\left\{ \matrix{
\left( {x - k} \right)\sin \alpha + \left( {z - h} \right)\cos \alpha = - \lambda \cos \beta \hfill \cr
\left( {x - k} \right)^{\,2} + y^{\,2} + \left( {z - h} \right)^{\,2} = \lambda ^{\,2} \hfill \cr} \right.
}$$
and intersecting the cone with the plane $z=0$
$$ \bbox[lightyellow] {
\left\{ \matrix{
\left( {x - k} \right)\sin \alpha - h\cos \alpha = - \lambda \cos \beta \hfill \cr
\left( {x - k} \right)^{\,2} + y^{\,2} + h^{\,2} = \lambda ^{\,2} \hfill \cr} \right.
}$$
and eliminating $\lambda$ we are left with
$$ \bbox[lightyellow] {
\cos ^{\,2} \beta \left( {x - k} \right)^{\,2} + \cos ^{\,2} \beta y^{\,2} + \cos ^{\,2} \beta h^{\,2} = \left( {h\cos \alpha - \left( {x - k} \right)\sin \alpha } \right)^{\,2}
}$$
which after some simple manipulations becomes:
$$ \bbox[lightyellow] {
\left( {\cos ^{\,2} \beta - \sin ^{\,2} \alpha } \right)x^{\,2} + \cos ^{\,2} \beta y^{\,2} + 2\left( {k\left( {\sin ^{\,2} \alpha - \cos ^{\,2} \beta } \right) +
h\sin \alpha \cos \alpha } \right)\,x = h^{\,2} \left( {\cos ^{\,2} \alpha - \cos ^{\,2} \beta } \right) + k^{\,2} \left( {\sin ^{\,2} \alpha -
\cos ^{\,2} \beta } \right) + 2h\,k\sin \alpha \cos \alpha
}$$
For getting the required canonical equation, first of all the term in $x$ must be null
$$ \bbox[lightyellow] {
k\left( {\sin ^{\,2} \alpha - \cos ^{\,2} \beta } \right) = - h\sin \alpha \cos \alpha
}$$
which replaced in the previous equation gives
$$ \bbox[lightyellow] {
\left( {\cos ^{\,2} \beta - \sin ^{\,2} \alpha } \right)x^{\,2} + \cos ^{\,2} \beta y^{\,2} = h^{\,2} \left( {\cos ^{\,2} \alpha - \cos ^{\,2} \beta } \right) - \,k^{\,2} \left( {\sin ^{\,2} \alpha - \cos ^{\,2} \beta } \right)
}$$
Finally, to obtain the required canonical form, we are led to solve the following system of three equations in the three unknown $\alpha, k, h$
$$ \bbox[lightyellow] {
\left\{ \matrix{
k\left( {\sin ^{\,2} \alpha - \cos ^{\,2} \beta } \right) = - h\sin \alpha \cos \alpha \hfill \cr
h^{\,2} \left( {\cos ^{\,2} \alpha - \cos ^{\,2} \beta } \right) - \,k^{\,2} \left( {\sin ^{\,2} \alpha - \cos ^{\,2} \beta } \right) = a^{\,2} \left( {\cos ^{\,2} \beta - \sin ^{\,2} \alpha } \right) \hfill \cr
h^{\,2} \left( {\cos ^{\,2} \alpha - \cos ^{\,2} \beta } \right) - \,k^{\,2} \left( {\sin ^{\,2} \alpha - \cos ^{\,2} \beta } \right) = b^{\,2} \cos ^{\,2} \beta \hfill \cr} \right.
}$$
which simplifies to the following, that provides the final solution for $(\alpha,\, k,\, h)$ in terms of $(\beta = u,\, a, \,b)$:
$$ \bbox[lightyellow] {
\left\{ \matrix{
\sin ^{\,2} \alpha = {{\left( {a^{\,2} - b^{\,2} } \right)} \over {a^{\,2} }}\cos ^{\,2} \beta \quad \left| \matrix{
\;b < a \hfill \cr
\;\sin \alpha < \cos \beta \quad \Rightarrow \quad \alpha < \pi /2 - \beta \hfill \cr} \right. \hfill \cr
k^{\,2} = {{\left( {a^{\,2} - b^{\,2} } \right)} \over {a^{\,2} }}{{\left( {a^{\,2} \sin ^{\,2} \beta + b^{\,2} \cos ^{\,2} \beta } \right)} \over {\sin ^{\,2} \beta }} \hfill \cr
h^{\,2} = {{b^{\,4} \cos ^{\,2} \beta } \over {a^{\,2} \sin ^{\,2} \beta }} \hfill \cr} \right.
}$$
example
with $a=3, \; b=2, \; \beta = u = 30^\circ$
the last identities give:
$$\sin\alpha= \sqrt{15}/6 \quad \Rightarrow \quad \alpha \approx 41.2 ^\circ$$
$$ k = \sqrt{105}/3 \approx 3.416$$
$$ h =4 \sqrt{3}/3 \approx 2.309$$