Show that $$\text{Pf} MAM^T = \text{det}M \cdot \text{Pf} A$$ for any matrix $M$ and antisymmetric $A$.
Attempt: $$\text{Pf} MAM^T = \frac{1}{2^N N!} \epsilon_{\alpha_1 \dots \alpha_{2N}} (MAM^T)_{\alpha_1 \alpha_2} \dots (MAM^T)_{\alpha_{2N-1} \alpha_{2N}} = \frac{1}{2^N N!}\epsilon_{\alpha_1 \dots \alpha_{2N}} M_{\alpha_1 \sigma_1} A_{\sigma_1 \delta_1} (M^T)_{\delta_1 \alpha_2} \dots M_{\alpha_{2N-1} \sigma_{2N-1}} A_{\sigma_{2N-1} \delta_{2N-1}} (M^T)_{\delta_{2N-1} \alpha_{2N}} $$ while $$\text{det} M = \epsilon_{\beta_1 \dots \beta_{2N}} M_{1, \beta_1} \dots M_{2N, \beta_{2N}}$$ and $$\text{Pf}A = \frac{1}{2^N N!} \epsilon_{\gamma_1 \dots \gamma_{2N}} (A)_{\gamma_1 \gamma_2} \dots (A)_{\gamma_{2N-1} \gamma_{2N}}$$
Working with the terms on the r.hs I see that $$\text{Pf}A \cdot \det M = \frac{1}{2^N N!} \epsilon_{\beta_1 \dots \beta_{2N}} \epsilon_{\gamma_1 \dots \gamma_{2N}} M_{1, \beta_1} \dots M_{2N, \beta_{2N}}(A)_{\gamma_1 \gamma_2} \dots (A)_{\gamma_{2N-1} \gamma_{2N}}$$ I don't see a way to proceed - is there perhaps another definition of $det$ I should use or can I argue based on these diagrammatic forms below?
