Let $a_{1}>0,a_{2}>0$ and $a_{n}=\dfrac{2a_{n-1}a_{n-2}}{a_{n-1}+a_{n-2}}, n>2$, then $\{ a_{n}\}$ converges to $\dfrac{3a_{1}a_{2}}{a_{1}+a_{2}}$.
My attempt: \begin{align} a_{n} &= \frac{2a_{n-1}a_{n-2}}{a_{n-1}+a_{n-2}} \\ &= \frac{2}{\dfrac{1}{a_{n-1}}+\dfrac{1}{a_{n-2}}} \\ & \le \frac{1}{\sqrt{a_{n-1}a_{n-2}}} \end{align}
I used AM- GM inequality here. I am not able to proceed further. How to solve the question? Please help me.