(Posting this as a separate answer, since unlike my previous one which was more generic and higher level, the following is narrower and fully hands-on.)
Let:
$$
\begin{align}
x & = \sqrt[3]{2} + \sqrt[3]{3} + \sqrt[3]{5} \tag{1}\\
y & = \sqrt[3]{2\cdot 3} + \sqrt[3]{3\cdot 5} + \sqrt[3]{5\cdot 2} \tag{2} \\
z & = \sqrt[3]{2\cdot 3\cdot 5} \quad\iff\quad z^3 = 30\tag{3}
\end{align}
$$
The following identity can be derived from Newton's relations, or otherwise be verified directly:
$$
a^3+b^3+c^3 = (a+b+c)^3 - 3(a+b+c)(ab+bc+ca) + 3abc \tag{4}
$$
Using the identity above with the terms of $x,y$ gives:
$$
\begin{align}
10 = 2+3+5 & = x^3-3 x y + 3z \tag{5}\\
31 = 2\cdot 3+3\cdot 5+ 5 \cdot 2 &= y^3-3y(\sqrt[3]{2\cdot 3}\,\sqrt[3]{3\cdot 5} + \sqrt[3]{3\cdot 5}\,\sqrt[3]{5\cdot 2} + \sqrt[3]{5\cdot 2}\,\sqrt[3]{2\cdot 3}) + 3 z^2 \\
& = y^3 -3y \sqrt[3]{2\cdot 3\cdot 5}\,(\sqrt[3]{2} + \sqrt[3]{3} + \sqrt[3]{5}) + 3 z^2 \\
& = y^3-3xyz + 3 z^2 \tag{6}
\end{align}
$$
The rest of the derivation consists of eliminating $y$ between $(5),(6)$ to obtain an algebraic equation in $x,z$, then eliminating $z$ between that equation and $z^3=30$ to obtain the final polynomial in $x$.
From $(5)\,$:
$$
y = \frac{x^3+3z-10}{3x} \tag{7}
$$
Substituting the expression for $y$ from $(7)$ in $(6)\,$ and using $z^3=30\,$ from $(3)\,$ at the last step:
$$
\require{cancel}
\begin{align}
0 & = y^3-3xyz + 3 z^2 - 31 \\
& = \frac{(x^3+3z-10)^3}{27 x^3} - \cancel{3x} \frac{x^3+\bcancel{3z}-10}{\cancel{3x}} z + \bcancel{3 z^2} - 31 \\
\iff 0 & = (x^3+3z-10)^3- 27 x^3(x^3-10)-27\cdot 31 x^3 \\
& = (x^3-10)^3+3(x^3-10)^2z + 27(x^3-10)z^2+27z^3- 27 x^3(x^3-10)-27\cdot 31 x^3 \\
& = 27(x^3-10)\,z^2-9(2x^6-10x^3-100)\,z+(x^3-10)^3-27\,(31 x^3-30) \tag{8}
\end{align}
$$
Define the polynomials in $x\,$:
$$
\begin{cases}
u = 27(x^3-10) \\
v = 9 (2 x^6 - 10 x^3 - 100) = 18(x^3-10)(x^3+5) \\
w = (x^3-10)^3-27\,(31 x^3-30) = x^9 - 30 x^6 - 537 x^3 - 190 \tag{9}
\end{cases}
$$
Then $(8)$ becomes:
$$
u z^2 = v z - w \tag{10}
$$
Raising to the $3^{rd}$ power and again using $z^3=30\,$:
$$
\begin{align}
900 u^3 = u^3 z^6 & = (vz-w)^3 \\
& = v^3z^3 - w^3 -3vz w \cdot (vz-w) \\
& = 30 v^3 - w^3 -3vwz \cdot u z^2 \\
& = 30 v^3 -w^3 - 90 uvw \tag{11} \\
\iff \quad w^3 + 90 uvw - 30 v^3 + 900 u^3 & = 0 \tag{12}
\end{align}
$$
Given that $w$ is monic and $\deg u = 3, \deg v = 6, \deg w = 9 $ as polynomials in $x\,$, $(12)$ defines a monic polynomial of degree $27$ with integer coefficients having $x = \sqrt[3]{2} + \sqrt[3]{3} + \sqrt[3]{5}$ as a root.
For verification, one can substitute the expressions for $u,v,w$ from $(9)$ into $(12)$ and derive the actual polynomial in $x$ after routine, albeit not pretty, algebraic manipulations...
$$
x^{27} - 90 x^{24} + 1089 x^{21} - 62130 x^{18} + 105507 x^{15} - 16537410 x^{12} - 30081453 x^9 - 1886601330 x^6 + 73062900 x^3 - 6859000 \tag{13}
$$
...then verify that $x = \sqrt[3]{2} + \sqrt[3]{3} + \sqrt[3]{5}$ is indeed a root.
As a side note, the same technique can be used to find a monic polynomial with integer coefficients having $x=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}$ as a root for arbitrary $a,b,c \in \mathbb{Z}$. However, in the case here the polynomial $(13)$ happens to be the minimal polynomial for the given value, but that's not necessarily true in general, for example for $x=\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{-3}$ or $x=\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\,$.