Hint $ $ The calculations are much simpler and more intuitive employing the following observation. Any set bijection $\,h\,:\,R'\to R\,$ serves to transport the ring structure of $\,(R,+,*,0,1)\,$ to $\,(R',\oplus,\otimes,0',1') \,$ by simply defining the operations in $\,R'\,$ to make $\,h\,$ be a ring isomorphism, i.e. so that $\,h(a\oplus b) = h(a)+h(b)\, $ and $\,h(a\otimes b) = h(a)h(b),\,$ yielding the transported operations
$$\begin{align} &a \oplus b\, :=\ h^{-1}(h(a) + h(b)),\quad 0' := h^{-1}(0)\\
&a \otimes b\, :=\, \color{darkorange}{h^{-1}}(\color{#0a0}{h(a)}\, *\, \color{#c00}{h(b)}),\quad 1' := h^{-1}(1)\end{align}\ \ \ \ $$
In OP $\ h(x) = 1\!-\!x\ $ so $\,\ a\otimes b \,=\, \color{darkorange}{1\:\!-}(\color{#0a0}{1\!-\!a})\:(\color{#c00}{1\!-\!b})\, = \,a+b-ab$
All of the (universal) ring axioms (or any ring identity) immediately transport from $R$ to $R',$ e.g. the associative law transports as below.
$$ \begin{align} h(\color{#c00}{a\oplus(b\oplus c)}) \,&=\, h(a)+h(b\oplus c)\\ &=\, h(a)+(h(b) + h(c))\\ &=\, (h(a) + h(b))+h(c),\,\ {\rm by}\,\ R\ \rm associative\\
&=\, h(a\oplus b)+h(c)\\
&=\, h(\color{#0a0}{(a\oplus b)\oplus c})\\
\underset{h^{-1}}\Longrightarrow \ \ \color{#c00}{a\oplus(b\oplus c)}\ \ &=\, \ \ \ \ \color{#0a0}{(a\oplus b)\oplus c}\ \ \Longrightarrow\ R'\ \rm is\ also\ associtive\end{align}\qquad\ \ $$
See here for further examples of transporting algebraic structure along a bijection.