The original proof by Ramanujan is available in my blog post (see equation $(17)$). An interesting and much simpler proof is provided by Oddmund Kolberg and I have presented his technique for the more complicated identity $$\begin{align}\sum_{n = 0}^{\infty}p(7n + 5)q^{n}&= 7\frac{\{(1 - q^{7})(1 - q^{14})(1 - q^{21})\cdots\}^{3}}{\{(1 - q)(1 - q^{2})(1 - q^{3})\cdots\}^{4}}\notag\\
&\,\,\,\,\,\,\,\,+ 49q\frac{\{(1 - q^{7})(1 - q^{14})(1 - q^{21})\cdots\}^{7}}{\{(1 - q)(1 - q^{2})(1 - q^{3})\cdots\}^{8}}\tag{1}\end{align}$$ in another blog post.
The same technique can be used to prove the identity in question here and with considerably less effort. Let $$\phi(q) = \prod_{n = 1}^{\infty}(1 - q^{n}) = (q; q)_{\infty}\tag{2}$$ We will make use of the identities
\begin{align}
\phi(q) &= \sum_{n = -\infty}^{\infty}(-1)^{n}q^{n(3n + 1)/2}\tag{3}\\
\phi^{3}(q) &= \sum_{n = 0}^{\infty}(-1)^{n}(2n + 1)q^{n(n + 1)/2}\tag{4}\\
\frac{1}{\phi(q)} &= \sum_{n = 0}^{\infty}p(n)q^{n}\tag{5}
\end{align}
Next step is to split the sums in $(3), (4), (5)$ based on powers of $q$ modulo $5$ so that $$\phi(q) = g_{0} + g_{1} + g_{2} + g_{3} + g_{4}\tag{6}$$ where $$g_{s} = \sum_{n = -\infty, n(3n + 1)/2 \equiv s \pmod{5}}^{\infty}(-1)^{n}q^{n(3n + 1)/2}\tag{7}$$ and $$\phi^{3}(q) = h_{0} + h_{1} + h_{2} + h_{3} + h_{4}\tag{8}$$ where $$h_{s} = \sum_{n = 0,n(n + 1)/2\equiv s\pmod{5}}^{\infty}(-1)^{n}(2n + 1)q^{n(n + 1)/2}\tag{9}$$ and $$\frac{1}{\phi(q)} = P_{0} + P_{1} + P_{2} + P_{3} + P_{4}\tag{10}$$ where $$P_{s} = \sum_{n = 0}^{\infty}p(5n + s)q^{5n + s}\tag{11}$$ Multiplying equations $(6)$ and $(10)$ and combining terms based on powers of $q$ modulo $5$ we get the following set of equations
\begin{align}
g_{0}P_{0} + g_{4}P_{1} + g_{3}P_{2} + g_{2}P_{3} + g_{1}P_{4} &= 1\notag\\
g_{1}P_{0} + g_{0}P_{1} + g_{4}P_{2} + g_{3}P_{3} + g_{2}P_{4} &= 0\notag\\
g_{2}P_{0} + g_{1}P_{1} + g_{0}P_{2} + g_{4}P_{3} + g_{3}P_{4} &= 0\notag\\
g_{3}P_{0} + g_{2}P_{1} + g_{1}P_{2} + g_{0}P_{3} + g_{4}P_{4} &= 0\notag\\
g_{4}P_{0} + g_{3}P_{1} + g_{2}P_{2} + g_{1}P_{3} + g_{0}P_{4} &= 0\notag
\end{align}
Our goal to is calculate $P_{4}$ which is given by $P_{4} = D_{4}/D$ where $D_{4}, D$ are determinants given by
$$D = \begin{vmatrix}g_{0} & g_{4} & g_{3} & g_{2} & g_{1}\\
g_{1} & g_{0} & g_{4} & g_{3} & g_{2}\\
g_{2} & g_{1} & g_{0} & g_{4} & g_{3}\\
g_{3} & g_{2} & g_{1} & g_{0} & g_{4}\\
g_{4} & g_{3} & g_{2} & g_{1} & g_{0}\end{vmatrix}\tag{12}$$ and
$$D_{4} = \begin{vmatrix}g_{1} & g_{0} & g_{4} & g_{3}\\
g_{2} & g_{1} & g_{0} & g_{4}\\
g_{3} & g_{2} & g_{1} & g_{0}\\
g_{4} & g_{3} & g_{2} & g_{1}\end{vmatrix}\tag{13}$$ The above determinants are evaluated using some relations between the $g_{s}$'s. First of all note that by definition of $g_{s}$ we have $g_{3} = g_{4} = 0$ (because $n(3n + 1)/2$ is never equal to $3$ or $4$ modulo $5$) and since $n(3n + 1)/2 \equiv 1 \pmod {5}$ is equivalent to $n \equiv -1 \pmod{5}$ we have
\begin{align}
g_{1} &= \sum_{n = -\infty}^{\infty}(-1)^{5n - 1}q^{(5n - 1)(15n - 2)/2}\notag\\
&= -\sum_{n = -\infty}^{\infty}(-1)^{n}q^{1 + 25n(3n - 1)/2}\notag\\
&= -q\sum_{n = -\infty}^{\infty}(-1)^{n}q^{25n(3n + 1)/2}\notag\\
&= -q\phi(q^{25})\tag{14}
\end{align}
Similarly $n(n + 1)/2$ is never equal to $2$ modulo $5$ and hence $h_{2} = 0$. From $(3)$ and $(4)$ we have $$\sum h_{s} = \left(\sum g_{s}\right)^{3}$$ or $$\sum h_{s} = (g_{0} + g_{1} + g_{2})^{3}$$ and equating the terms with powers of $q$ equal to $2$ modulo $5$ we get $$h_{2} = 3g_{0}^{2}g_{2} + 3g_{1}^{2}g_{0}$$ Noting that $h_{2} = 0$ we get $$g_{0}g_{2} + g_{1}^{2} = 0\tag{15}$$ The evaluation of the determinant $D_{4}$ is considerably simplified if we use the notation $$\alpha = g_{0}/g_{1}, \beta = g_{2}/g_{1}$$ From $(15)$ we get $$\alpha\beta = -1\tag{16}$$ and the determinant $D_{4}$ gets simplified as $$D_{4} = g_{1}^{4}\begin{vmatrix}1 & \alpha & 0 & 0\\
\beta & 1 & \alpha & 0\\
0 & \beta & 1 & \alpha\\
0 & 0 & \beta & 1\end{vmatrix} = 5g_{1}^{4}\tag{17}$$ The evaluation of determinant $D$ is aided by the fact that it is the determinant of a circulant matrix $A$. The determinant of a square matrix is the product of its eigenvalues and it is easy to find the eigenvalues of a circulant matrix. If $\omega$ is a $5^{\text{th}}$ root of unity (including $1$) then $$g_{0} + \omega g_{1} + \omega^{2}g_{2} + \omega^{3}g_{3} + \omega^{4}g_{4}$$ is an eigenvalue of $A$. Thus if $\omega$ is a primitive $5^{\text{th}}$ root of unity then $$\lambda_{t} = g_{0} + \omega^{t} g_{1} + \omega^{2t}g_{2} + \omega^{3t}g_{3} + \omega^{4t}g_{4}$$ gives all the eigenvalues of $A$ for $t = 0, 1, 2, 3, 4$. The determinant $D$ is therefore given by $$D = \prod_{t = 0}^{4}(g_{0} + \omega^{t} g_{1} + \omega^{2t}g_{2} + \omega^{3t}g_{3} + \omega^{4t}g_{4} = \prod_{t = 0}^{4}\sum_{s = 0}^{4}\omega^{st}g_{s}$$ From the definition of $g_{s} = g_{s}(q)$ we can easily see that $\omega^{st}g_{s}(q) = g_{s}(\omega^{t}q)$ and hence
\begin{align}
D &= \prod_{t = 0}^{4}\sum_{s = 0}^{4}\omega^{st}g_{s} = \prod_{t = 0}^{4}\sum_{s = 0}^{4}g_{s}(\omega^{t}q) = \prod_{t = 0}^{4}\phi(\omega^{t}q)\notag\\
&= \prod_{t = 0}^{4}\prod_{n = 1}^{\infty}(1 - \omega^{nt}q^{n}) = \prod_{n = 1}^{\infty}\prod_{t = 0}^{4}(1 - \omega^{tn}q^{n})\notag\\
&= \prod_{n \not\equiv 0\pmod{5}}(1 - q^{5n})\prod_{n \equiv 0\pmod{5}}(1 - q^{n})^{5} = \frac{\phi^{6}(q^{5})}{\phi(q^{25})}\tag{18}
\end{align}
From equations $(14), (17)$ and $(18)$ we can see that $$\sum_{n = 0}^{\infty}p(5n + 4)q^{5n + 4} = P_{4} = \frac{D_{4}}{D} = 5q^{4}\frac{\phi^{5}(q^{25})}{\phi^{6}(q^{5})}$$ and replacing $q^{5}$ by $q$ we get $$\sum_{n = 0}^{\infty}p(5n + 4)q^{n} = 5\frac{\phi^{5}(q^{5})}{\phi^{6}(q)}=5\frac{(q^{5};q^{5})_{\infty}^{5}}{(q;q)_{\infty}^{6}}\tag{19}$$ which is the desired result in question.