(Rellich–Kondrachov I) \label{(Rellich-Kondrachov)}
Let $1 \leq p < n$ and let $\Omega \subset \mathbb{R}^{n}$ be an extension domain for $\mathcal{W}^{1,p}(\Omega)$ of finite measure. Let $(u_{n}) \subset \mathcal{W}^{1,p}(\Omega)$ be a bounded sequence. Then there exists a subsequence $(u_{n_{k}})$ of $(u_{n})$ and a function $u \in L^{q}(\Omega)$ such that $u_{n_{k}} \rightarrow u$ in $L^{q}(\Omega)$ for every $1\leq p \leq q < p^{*}$. \cite[p.322]{Leoni}
\cite[2.33]{Aubin1}(Rellich–Kondrachov II)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with Lipschitz boundary. Then:
$i)$ If $m \in \mathbb{N}$, $1 \leq p < \infty$, and $0 \leq \ell < m$, the inclusion
\begin{equation}
\mathcal{W}^{m,p}(\Omega) \hookrightarrow \mathcal{W}^{\ell,q}(\Omega)
\end{equation}
is compact if
$$
\frac{1}{q} \geq \frac{1}{p} - \frac{m - \ell}{n},
\quad
q < \frac{n p}{n - (m - \ell)p}.
$$
If $m p < n$, $1\geq \frac{1}{q} > \frac{1}{p} - \frac{k}{n}$ and $q \in [1, \frac{n p}{n - m p})$ then
$$
\mathcal{W}^{m,p}(\Omega) \hookrightarrow L^q(\Omega).
$$
$ii)$ If $s \in \mathbb{R}$, $1 \leq p < \infty$, and $0 \leq \ell < s$, the inclusion
\begin{equation}
\mathcal{W}^{s,p}(\Omega) \hookrightarrow \mathcal{W}^{\ell,q}(\Omega)
\end{equation}
is compact if
$$
\frac{1}{q} \geq \frac{1}{p} - \frac{s - \ell}{n},
\quad
q < \frac{n p}{n - (s - \ell)p}.
$$
In particular, if $s p < n$, and $q \in \left[1, \frac{n p}{n - s p}\right)$ then
$$
\mathcal{W}^{s,p}(\Omega) \hookrightarrow L^q(\Omega).
$$
If $m p = n$ (resp.\ $s p = n$), the inclusion $\mathcal{W}^{m,p}(\Omega) \hookrightarrow L^q(\Omega)$ is not compact for any $q \geq 1$.
\label{Rellich-Kondrachov III}
\cite[t.3.6, c.3.7]{Hebey}(Rellich–Kondrachov III).
Let $(M,g)$ be a compact boundaryless Riemannian $n$-manifold. Then:
i) For integers $j \geq 0$ and $m \geq 1$, and any real $q \geq 1$ and $p \in \mathbb{R}$ such that $1 \leq p < \tfrac{n q}{n - m q}$, the embedding
\begin{equation}
\mathcal{W}^{j+m,q}(M) \hookrightarrow \mathcal{W}^{j,p}(M)
\end{equation}
is compact. Equivalently, if $k,\ell \in \mathbb{N}$ and $k-\tfrac{n}{p} > \ell-\tfrac{n}{q}$, then the map
\begin{equation}
\mathcal{W}^{k,p}(M) \hookrightarrow \mathcal{W}^{\ell,q}(M)
\end{equation}
is compact. For $1 \leq q < n$ and any $p \geq 1$ such that $\tfrac{1}{p} > \tfrac{1}{q} - \tfrac{1}{n}$, the embedding $\mathcal{W}^{1,q}(M) \hookrightarrow L^{p}(M)$ is compact.
ii) If $(M,g)$ is compact without boundary, for $s \in \mathbb{R}$ with $s p < n$, the embedding
\begin{equation}
\mathcal{W}^{s,p}(M) \hookrightarrow L^{q}(M)
\end{equation}
is continuous for $1<p \leq q \leq p^{*}$ and is compact when $q < p^{*}$. The above embedding is also compact for $q=\infty$ if and only if $s p > n$ and $p < \infty$, namely
\begin{equation}
\mathcal{W}^{s,p}(M) \hookrightarrow L^{\infty}(M).
\end{equation}