I worked this out referring to what you have already done and what Ian suggested. Also refer to https://proofwiki.org/wiki/Scaling_Property_of_Dirac_Delta_Function .
To prove $\delta(kx)=\frac{1}{|k|} \delta(x)$ , instead prove ${|k|}\delta(kx)= \delta(x)$, where k is a nonzero real constant.
Use the definition of $\delta(x)$ consiting of the first condition:
$$\delta \left({x}\right) = \begin{cases}
+\infty & : x = 0 \\
0 & : x \neq 0
\end{cases}$$
and the second condition:
$$I=\int_{-\infty}^{+\infty} \delta \left({x}\right) dx = 1$$
Then show $\delta \left({kx}\right)$ satifies the second condition
$$I=\int_{-\infty}^{+\infty}|k| \delta \left({kx}\right) dx $$
$$=|k|\int_{-\infty}^{+\infty} \delta \left({kx}\right) dx = 1$$
since the first condition is obviously satisfied by $\delta \left({kx}\right)$ which is equal to $\infty$ for $x=0$ and is otherwise equal to zero.
Proceeding to find the integrals, $I$: let $y=kx$, then $dy=kdx$ and $dx=\frac{dy}{k}$.
So
$$I=|k|\int_{-\infty}^{+\infty} \delta \left({kx}\right) dx
=|k|\int_{-\infty}^{+\infty} \delta \left({y}\right) \frac{dy}{k}$$
for $k>0$ $$I=\frac{|k|}{k}\int_{-\infty}^{+\infty} \delta \left({y}\right) dy =\frac{k}{k}\int_{-\infty}^{+\infty} \delta \left({y}\right) dy =1$$
and for $k<0$, noting that $y=kx$ will change the signs of the limits of integration, and also that reversing the limits multiplies the integrand by $-1$ $$I=\frac{|k|}{k}\int_{+\infty}^{-\infty} \delta \left({y}\right) dy =\frac{-|k|}{k}\int_{-\infty}^{+\infty} \delta \left({y}\right) dy =\frac{k}{k}\int_{-\infty}^{+\infty} \delta \left({y}\right) dy =1$$
which finishes the proof.