Hint $\ $ The sum telescopes, i.e. the induction step simplifies as follows
If $\qquad f(1) + f(2)+\cdots + f(n\!-\!1)\quad =\quad \color{#0a0}{g(n\!-\!1)}$
then $\ \ \ f(1) + f(2)+\cdots +f(n\!-\!1) + \color{#c00}{f(n)}\,=\,\color{#0a0}{ g(n)}\iff \color{#c00}{f(n)}=\color{#0a0}{g(n)-g(n\!-\!1)}$
Combining the above with the base case $\,f(1)=g(1)\,$ we obtain an inductive proof of
$$\sum_{k=1}^{n} f(k)\, =\, g(n)\,\iff\, \underbrace{f(n) = g(n)-g(n\!-\!1)}_{\large \rm inductive\ step}\ {\rm and}\ \underbrace{f(1) = g(1)}_{\large\rm base\ case}$$
In your case you have $\,g(n) = n/(2n\!+\!1)\,$ so, by above, the induction step holds for this $\,g(n)\,$ iff $\, g(n)-g(n\!-\!1) = f(n) = 1/(2n\!-\!1)(2n\!+\!1),\,$ which is easily verified .
Remark $\ $ My prior posts contain many more examples of telescopy. It reduces problems like this to trivial high-school arithmetic, i.e. verifying the equality of two polynomials in $\,n$.