If $x_n$ converges to $x$, then $\lim \inf(x_n+y_n)=x+\lim \inf y_n$.
I know from a previous proof that $$\lim \inf(x_n+y_n)\geq \lim \inf(x_n) + \lim \inf(y_n).$$ From there I can do the following, since $x_n$ converges to $x$, $$\lim \inf(x_n+y_n)\geq x + \lim \inf(y_n).$$
But how do I get inequality?