Let $Z$ be a proper subspace of an $n$ dimensional vector space $X$ and let $x_0\in X-Z$. Show that there exists a linear functional $f$ on $X$ such that $f(x_0)=1$ and $f(x)=0\forall x\in Z$.
Let $\{(z_i):1\leq i\leq m\};m<n$ be a basis of $Z$ .Then I can extend this linearly independent set to form a basis of $X$ say $\{(z_i):1\leq i\leq m\}\cup \{x_{m+1},x_{m+2}...x_n\}$.
Define $f:X\to K$ where $K$ is the scalar field of $X$ such that $f(z_i)=0;f(x_{m+1})=f(x_{m+2})=...=f(x_n)=1$.
Now if $x\in Z\implies x=\sum_{i=1}^m \beta_iz_i\implies f(x)=0$;
$x\in X-Z\implies x=\sum_{i=1}^m \beta_iz_i+\sum_{i={m+1}}^n\beta_ix_i\implies f(x)=\sum_{i={m+1}}^n\beta_if(x_i)$.
Now define $g:X\to K$ by $g(x)=\dfrac{f(x)}{|f(x)|}$ which is the required functional.Is this correct?