Let $A[x_1, \ldots, x_n]$ be a polynomial ring over a Noetherian, commutative ring, $A$. Is the polynomial ring Cohen-Macaulay?
If not, does it follow the dimension formula, $ \mathrm{dim} (A[x_1, \ldots, x_n]) = \mathrm{dim} (A[x_1, \ldots, x_n]/\mathfrak{p}) + \mathrm{ht} (\mathfrak{p} ), $ for a prime ideal, $\mathfrak{p}$ in $A[x_1, \ldots, x_n]$.