2

Let $A[x_1, \ldots, x_n]$ be a polynomial ring over a Noetherian, commutative ring, $A$. Is the polynomial ring Cohen-Macaulay?

If not, does it follow the dimension formula, $ \mathrm{dim} (A[x_1, \ldots, x_n]) = \mathrm{dim} (A[x_1, \ldots, x_n]/\mathfrak{p}) + \mathrm{ht} (\mathfrak{p} ), $ for a prime ideal, $\mathfrak{p}$ in $A[x_1, \ldots, x_n]$.

user26857
  • 53,190
Zoey
  • 545

1 Answers1

3
  1. It's well known that $A[x_1, \ldots, x_n]$ is CM iff $A$ is CM.

  2. Let $A=\mathbb Z_{(2)}$. Then $\dim\mathbb Z_{(2)}[X]=2$, $\dim\mathbb Z_{(2)}[X]/(2X-1)=0$ and $\operatorname{ht}(2X-1)=1$.

user26857
  • 53,190
  • related question: http://math.stackexchange.com/questions/1369700/when-will-ax-1-ldots-x-n-satisfy-the-dimension-formula – Zoey Jul 22 '15 at 06:58