$\ (a,b)\!=\!1\Rightarrow (b,a^n\!-b^n) = (b,a^n) \!=\! 1\,$ so $\,\color{#c00}{b\ {\rm is\ coprime}}$ to $\,a^x\!-b^x,\,a^y\!-b^y\,$ so coprime to any common divisor $\,d.\ $ So $\,{\rm mod}\ d\!:\ c \equiv \frac{a}b \equiv a\color{#c00}{b^{-1}\rm\ exists}$, $ $ so $\ a^k\equiv b^k\!\!\color{#c00}\iff\! c^k\equiv\left(\frac{a}b\right)^k\!\equiv 1\,$ so
$$\begin{align}a^x&\equiv b^x\\ a^y&\equiv b^y\end{align}
\!\!\!\color{#c00}\iff\!\!\! \begin{array}{}c^x\equiv 1\\ c^y\equiv 1\end{array} \!\!\!\!\color{#0cf}{\overset{\cal O\!\!\!}\iff} {\rm ord}\, c\,|\,x,y\!\!\color{darkorange}{\overset{U\!\!\!}\iff} {\rm ord}\, c\,|\,\overbrace{(x,y)}^{g}\!\!\!\!\color{#0cf}{\overset{\cal O\!\!\!}\iff}\! c^g\equiv 1\!\!\color{#c00}\iff\! a^g\equiv b^g\quad\ $$
where above $\!\color{#0cf}{\overset{\cal O\!}\iff}$ is by the Order Theorem and $\!\color{darkorange}{\overset{U\!}\iff}$ is by the gcd Universal Property.
So $\,d\mid a^x-b^x,a^y-b^y\!\iff\! d\mid a^g-b^g,\,$ so they have the same set $\,S\,$ of common divisors $\,d,\,$ hence the same greatest common divisor (= $\max S)$.
Remark $ $ This method of reducing a proof about a homogeneous polynomial $\,a^n-b^m\,$ to a simpler nonhomogeneous polynomial $\,a^n-1\,$ often proves handy.