5

I am trying to find out why $(\log(n))^{99} = o(n^{\frac{1}{99}})$. I tried to find the limit as this fraction goes to zero.

$$ \lim_{n \to \infty} \frac{ (\log(n))^{99} }{n^{\frac{1}{99}}} $$

But I'm not sure how I can reduce this expression.

Juho
  • 22,905
  • 7
  • 63
  • 117
David Faux
  • 1,627
  • 5
  • 23
  • 28

3 Answers3

7

$\qquad \begin{align} \lim_{x \to \infty} \frac{ (\log(x))^{99} }{x^{\frac{1}{99}}} &= \lim_{x \to \infty} \frac{ (99^2)(\log(x))^{98} }{x^{\frac{1}{99}}} \\ &= \lim_{x \to \infty} \frac{ (99^3) \times 98(\log(x))^{97} }{x^{\frac{1}{99}}} \\ &\vdots \\ &= \lim_{x \to \infty} \frac{ (99^{99})\times 99! }{x^{\frac{1}{99}}} \\ &= 0 \end{align}$

I used L'Hôpital's rule law in each conversion assuming natural logarithm.

Raphael
  • 73,212
  • 30
  • 182
  • 400
Reza
  • 2,296
  • 16
  • 17
5

Hint: take $99$th root of both sides.

Yuval Filmus
  • 280,205
  • 27
  • 317
  • 514
4

Try a common trick: express both functions as $e^{\dots}$ and compare the exponents; if their ratio tends to $0$ or $\infty$, so does the original quotient (see here for the full rule).

$\frac{(\log n)^{99}}{n^{\frac{1}{99}}} = \frac{e^{99 \cdot \log(\log n)}}{e^{\frac{1}{99} \cdot \log n}}$

Raphael
  • 73,212
  • 30
  • 182
  • 400