0

Below is my solution. Is this sufficient enough to prove?

$$|x^3+5x| \le |x^3+5x^3|$$

$$x^3 + 5^x \le 6x^3, x > 1, C=6$$

Let's take $x = 2$.

$$f(x) = (2)^3 + 5(2) = 18$$

$$g(x) = 6\cdot 8 = 48$$

For when $x > 1 |f(x)| \le C|g(x)|$ is false hence proving $x^3 + 5x$ is not $O(x^2)$.

Raphael
  • 73,212
  • 30
  • 182
  • 400

0 Answers0