Let $L=\{a^nb^n | n \ge 1\}$, then $L^\star=L^0 \cup L^1 \cup L^2 \cup L^3 \cup \dots = \{\epsilon\} \cup \{a^nb^n\} \cup L^2 \cup L^3 \cup \cdots$ .
How to find $L^2$ and $L^3$, and is $L^2=\{a^nb^na^nb^n\}$? In this video https://youtu.be/rnGpW6RRAcw at 31:51, the professor said that $L^2 = \{a^{n_1}b^{n_1}a^{n_2}b^{n_2}\}$, how did she find this form.