I've learned that one can represent natural numbers with lambda calculus like this:
\begin{align*} c_0 &= \lambda s. \lambda z. z\\ c_1 &= \lambda s. \lambda z. s~z\\ c_2 &= \lambda s. \lambda z. s~(s~z)\\ c_3 &= \lambda s. \lambda z. s~(s~(s~z))\\ \end{align*}
But could one also write
\begin{align*} c'_0 &= \lambda z. \lambda s. z\\ c'_1 &= \lambda z. \lambda s. s~z\\ c'_2 &= \lambda z. \lambda s. s~(s~z)\\ c'_3 &= \lambda z. \lambda s. s~(s~(s~z))\\ \end{align*}
?
Why / why not?