Let $\mathbb{F}_q$ be a finite field of size $q$ (prime), and $\mathbb{F}_{q^n}$ be a degree-$n$ algebraic extension of $\mathbb{F}_q$.
Let $F$ be a polynomial function $\mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ of the form $$ \sum_{i, j \in I_A} A_{i,j} X^{q^i + q^j} + \sum_{i\in I_B} B_i X^{q^i} + C $$ where $A_{i,j}, B_i,$ and $C$ are some constants in $\mathbb{F}_{q^n}$.
Given a random $D \in \mathbb{F}_{q^n}$, we need to find a solution $X$ for $F(X) = D$.
My question is: why does such a solution exist? Does the range of $F$ cover $\mathbb{F}_\mathbb{q^n}$? How do we check?