OK, I did this quickly. Hope it’s correct.
When $r*\geq 0,$ the relationship holds as you observed. And when $r^*\leq -1,$ the same expression for both probabilities you want to compare enables a direct proof.
Let $r^*\in(-1,0),$ so that $1+r^* \in (0,1).$ Then what you want to show is
$$\frac{1}{2} e^{-\epsilon(1+r^*)}\geq e^{-\epsilon}\left(1-\frac{1}{2} e^{\epsilon r^*}\right)
$$
or
$$
\frac{1}{2} e^{-\epsilon(r^*+1)}+
\frac{1}{2} e^{\epsilon (r^*-1)} \geq e^{-\epsilon}
$$
or
$$
e^{-\epsilon}
\left(
\frac{ e^{-\epsilon r^*}+ e^{\epsilon r^*}}{2}
\right)\geq e^{-\epsilon}
$$
which holds since the cosh function is lower bounded by $1.$
When $r*<-1$, a litlle more larger, we want to find the next inequality:
\begin{equation*}
\begin{split}
e^{\epsilon} \left(1-\frac{1}{2}e^{\epsilon(x+1)} \right) \geq 1-\frac{1}{2}e^{\epsilon(x)}\\
e^{\epsilon}-\frac{1}{2}e^{\epsilon x+ 2\epsilon}\geq 1-\frac{1}{2}e^{\epsilon(x)}
\end{split}
\end{equation*}
Which we will bounded by both inequalities using the fact that $r*\leq-1$
\begin{equation*}
\begin{split}
r* &\leq -1\\
e^{\epsilon r*} &\leq e^{-\epsilon}\\
e^{\epsilon x + 2\epsilon} &\leq e^{\epsilon}\\
-\frac{1}{2}e^{\epsilon r*+ 2\epsilon} &\geq -\frac{1}{2}e^{\epsilon}\\
e^{\epsilon}-\frac{1}{2}e^{\epsilon r*+ 2\epsilon} &\geq e^{\epsilon}-\frac{1}{2}e^{\epsilon}\\
\end{split}
\end{equation*}
The same way we have:
\begin{equation*}
\begin{split}
r* &\leq -1\\
1-\frac{1}{2}e^{\epsilon x} & \geq 1-\frac{1}{2}e^{-\epsilon}
\end{split}
\end{equation*}
Joining this inequalitys, we can obtain
\begin{equation*}
\begin{split}
e^{\epsilon}-\frac{1}{2}e^{\epsilon} > 1-\frac{1}{2}e^{-\epsilon}\\
2(e^{\epsilon}-1) > e^{\epsilon}-e^{-\epsilon}
\end{split}
\end{equation*}
Where the inequalitie holds since $2>1$ and $-1 \leq - e^{-\epsilon}$